Identification of a Nonlinear System by Determining of Fuzzy Rules

نویسندگان

  • Hodjatollah Hamidi
  • Atefeh Daraei
چکیده

In this article the hybrid optimization algorithm of differential evolution and particle swarm is introduced for designing the fuzzy rule base of a fuzzy controller. For a specific number of rules, a hybrid algorithm for optimizing all open parameters was used to reach maximum accuracy in training. The considered hybrid computational approach includes: opposition-based differential evolution algorithm and particle swarm optimization algorithm. To train a fuzzy system hich is employed for identification of a nonlinear system, the results show that the proposed hybrid algorithm approach demonstrates a better identification accuracy compared to other educational approaches in identification of the nonlinear system model. The example used in this article is the Mackey-Glass Chaotic System on which the proposed method is finally applied.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of Cement Rotary Kiln in Noisy Condition using Takagi-Sugeno Neuro-fuzzy System

Cement rotary kiln is the main part of cement production process that have always attracted many researchers’ attention. But this complex nonlinear system has not been modeled efficiently which can make an appropriate performance specially in noisy condition. In this paper Takagi-Sugeno neuro-fuzzy system (TSNFS) is used for identification of cement rotary kiln, and gradient descent (GD) algori...

متن کامل

Solving a non-convex non-linear optimization problem constrained by fuzzy relational equations and Sugeno-Weber family of t-norms

Sugeno-Weber family of t-norms and t-conorms is one of the most applied one in various fuzzy modelling problems. This family of t-norms and t-conorms was suggested by Weber for modeling intersection and union of fuzzy sets. Also, the t-conorms were suggested as addition rules by Sugeno for so-called  $lambda$–fuzzy measures. In this paper, we study a nonlinear optimization problem where the fea...

متن کامل

Design On-Line Tunable Gain Artificial Nonlinear Controller

One of the most important challenges in nonlinear, multi-input multi-output (MIMO) and time variant systems (e.g., robot manipulator) is designing a controller with acceptable performance. This paper focused on design a new artificial non linear controller with on line tunable gain applied in the robot manipulator. The sliding mode fuzzy controller (SMFC) was designed as 7 rules Mamdani’s infer...

متن کامل

Design On-Line Tunable Gain Artificial Nonlinear Controller

One of the most important challenges in nonlinear, multi-input multi-output (MIMO) and time variant systems (e.g., robot manipulator) is designing a controller with acceptable performance. This paper focused on design a new artificial non linear controller with on line tunable gain applied in the robot manipulator. The sliding mode fuzzy controller (SMFC) was designed as 7 rules Mamdani’s infer...

متن کامل

Design of nonlinear parity approach to fault detection and identification based on Takagi-Sugeno fuzzy model and unknown input observer in nonlinear systems

In this study, a novel fault detection scheme is developed for a class of nonlinear system in the presence of sensor noise. A nonlinear Takagi-Sugeno fuzzy model is implemented to create multiple models. While the T-S fuzzy model is used for only the nonlinear distribution matrix of the fault and measurement signals, a larger category of nonlinear systems is considered. Next, a mapping to decou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017